
Code analysis for python

Py�akes, Pychecker & Pylint

Neil Muller

March 21, 2009



Why Bother?

I The aim -> improve code quality

I trivially a good idea

I Detect obvious errors & warn of dangerous constructs

I Static analysis has limitations, especially when dealing with
�exible languages like python

I Remains a useful additional tool



Other tools

I rats (Rough Auding Tool for Security) - checks for possibly
insecure code constructs. Very limited python support

I django-lint - wrapper around pylint for django projects.
Includes several additional django speci�c checks

I owasp-python-static-analysis - static input validation for
python web apps. Still very much under development

I Starkiller - type inference analysis. Intended to be a part of a
more complete static analysis project, but seems to have died.

I clonedigger - detects duplicated blocks of code



Py�akes

I Pure static analysis of the parse tree

I Checks only for logic errors, no style checks

I Comparatively limited range of errors detected

I No support for modules, will check only �les on command line
or all �les in directories on the command line

I Very fast - cheap enough to be setup as a simple pre-commit
check or called from an editor



Pychecker

I Actually imports the �le/module - somewhat di�erent
semantics from the other checkers

I More through set of checks than py�akes

I Development has been slow - pretty much dead during 2006 &
2007, but picked up in 2008.

I Will recursively check imports (can be annoying for the
standard library, so various checks can be disabled)

I Can be imported into the module space, so checks also done
at runtime

I Quite con�gurable - limit checks via command line, con�g �le,
or using _pychecker_ hints in the program



Pylint

I Purely static analysis of the parse tree

I Adds lots of style checks

I Very con�gurable - can specify naming conventions, etc.

I Can be controlled by commandline options, con�g�le and
comments in the �le

I Nice report formatting options

I �-f colorized� rocks
I Total score, with con�gurable metrics
I Caches previous results - useful for spotting changes that need

closer attention

I Warns of duplicated code, although is across �les - doesn't
detect copy and paste within a �le.

I Test is also very simplistic, and easily fooled by minor style
changes



Customisation

I Py�akes - no con�guration options

I Pychecker:

I Enable/ Disable checks (several checks default to o�)
I Supports lists of acceptable names for various checks (dummy

variables, etc)
I Warning can be enabled/disabled locally

using__pychecker__ variable, but note scoping e�ects.

I Pylint: Most �exible of the three

I allows specifying regexes for naming conventions,
I Warnings can be selectively enabled/disabled by in�le

comments (although repeated enables & disables is a bit
buggy at times)

I Plugin support



Extending Pylint

I Can add additional checks using plugins

I Two types of plugin - RawChecker & ASTNGChecker

I RawChecker - Fed lines from the �le directory

I Good for various formatting checks (mixing spaces & tabs,
etc).

I ASTNGChecker

I Pylint uses an extended version of the default python AST
I Stores a bunch of extra state in the AST for use in checkers

I Things to note

I Message ID's must be unique (used as dictionary keys)
I Con�g �le sections are assumed to be per-checker.

Extended/accessing existing con�g sections �ddly
I Checkers initialised only once per run, not per �le.


