Code analysis for python
Pyflakes, Pychecker & Pylint

Neil Muller

March 21, 2009

Why Bother?

» The aim -> improve code quality
> trivially a good idea
» Detect obvious errors & warn of dangerous constructs

» Static analysis has limitations, especially when dealing with
flexible languages like python

» Remains a useful additional tool

Other tools

» rats (Rough Auding Tool for Security) - checks for possibly
insecure code constructs. Very limited python support

» django-lint - wrapper around pylint for django projects.
Includes several additional django specific checks

> owasp-python-static-analysis - static input validation for
python web apps. Still very much under development

» Starkiller - type inference analysis. Intended to be a part of a
more complete static analysis project, but seems to have died.

> clonedigger - detects duplicated blocks of code

Pyflakes

vV v v Y

Pure static analysis of the parse tree
Checks only for logic errors, no style checks
Comparatively limited range of errors detected

No support for modules, will check only files on command line
or all files in directories on the command line

Very fast - cheap enough to be setup as a simple pre-commit
check or called from an editor

Pychecker

» Actually imports the file/module - somewhat different
semantics from the other checkers

» More through set of checks than pyflakes

» Development has been slow - pretty much dead during 2006 &
2007, but picked up in 2008.

» Will recursively check imports (can be annoying for the
standard library, so various checks can be disabled)

» Can be imported into the module space, so checks also done
at runtime

» Quite configurable - limit checks via command line, config file,
or using _pychecker hints in the program

Pylint

Purely static analysis of the parse tree
Adds lots of style checks

Very configurable - can specify naming conventions, etc.

vV v v Vv

Can be controlled by commandline options, configfile and
comments in the file

» Nice report formatting options

» ““f colorized" rocks

» Total score, with configurable metrics

» Caches previous results - useful for spotting changes that need
closer attention

» Warns of duplicated code, although is across files - doesn't
detect copy and paste within a file.

» Test is also very simplistic, and easily fooled by minor style
changes

Customisation

> Pyflakes - no configuration options
» Pychecker:

» Enable/ Disable checks (several checks default to off)

» Supports lists of acceptable names for various checks (dummy
variables, etc)

» Warning can be enabled/disabled locally
using__ pychecker variable, but note scoping effects.

» Pylint: Most flexible of the three

» allows specifying regexes for naming conventions,

» Warnings can be selectively enabled/disabled by infile
comments (although repeated enables & disables is a bit
buggy at times)

» Plugin support

Extending Pylint

v

Can add additional checks using plugins
Two types of plugin - RawChecker & ASTNGChecker

RawChecker - Fed lines from the file directory

v

v

» Good for various formatting checks (mixing spaces & tabs,
etc).

ASTNGChecker

» Pylint uses an extended version of the default python AST
» Stores a bunch of extra state in the AST for use in checkers

v

v

Things to note

» Message ID's must be unique (used as dictionary keys)

» Config file sections are assumed to be per-checker.
Extended/accessing existing config sections fiddly

» Checkers initialised only once per run, not per file.

