
Grammar Parsing in Python

Neil Muller

9 Feb 2008 (CTPUG 8)

Why?

(if you have to ask, you haven't been coding long enough)

I Often required to be able to deal with mini-languages

I Con�g �les
I structured input data
I and so forth

I Need to enforce syntax contraints

I Need to obtain a useful representation of data

Parser and Lexer Modules

I PLY: http://www.dabeaz.com/ply/

I pyparsing: http://pyparsing.wikispaces.com/

I antlr: http://www.anltr.org/

I SimpleParse: http://simpleparse.sourceforge.net/

I Martel: http://www.dalkescienti�c.com/Martel/

I ZestyParser: http://zestyparser.admatlas.org/

I Rparse:
http://della1rv.googlepages.com/theparserparsergenerator

I Parsing: http://www.canonware.cm/Parsing

I Numerous others

I Not to mention special purpose parsers - Con�gParser, parser,
shlex and so on.

Parser and Lexer Modules

I PLY: http://www.dabeaz.com/ply/

I pyparsing: http://pyparsing.wikispaces.com/

Hello World! Example

Problem:
Parse 'Hello World!'

Hello World! Example

Problem:
Parse 'Hello World!'

Grammar speci�cation:
Parser:

Greeting: Word Word SentenceEnd

Hello World! Example

Problem:
Parse 'Hello World!'

Grammar speci�cation:
Parser:

Greeting: Word Word SentenceEnd

Lexer:

Word = [A-Za-z]*
SentenceEnd = !

Hello World! Example

Problem:
Parse 'Hello World!'

Grammar speci�cation:
Parser:

Greeting: [Hello|Hey|Howdy] Word SentenceEnd

Lexer:

Word = [A-Za-z]*
SentenceEnd = !

Further Examples

I Commas

I Is the behaviour of ' �A, B�, C, �D, E� '.split(',') desired?

I Simple Calculator

I Handle expressions: 1+2 *3
I Usual precedence
I Handle ()'s

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)
I tends to be slow

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)
I tends to be slow

I PLY:

I magic function/method names

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)
I tends to be slow

I PLY:

I magic function/method names
I File-orientated: class-based approaches can be fudged, but it is

a fudge

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)
I tends to be slow

I PLY:

I magic function/method names
I File-orientated: class-based approaches can be fudged, but it is

a fudge
I docstrings are signi�cant

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)
I tends to be slow

I PLY:

I magic function/method names
I File-orientated: class-based approaches can be fudged, but it is

a fudge
I docstrings are signi�cant (but at least that means docstrings

are there)
I BNF syntax

Comments

I PyParsing:

I Pythonic syntax: relies heavily on operator overloading
I Lexer and Parser de�ned simulatenously
I Useful high-level constructs (Keyword, etc)
I tends to be slow

I PLY:

I magic function/method names
I File-orientated: class-based approaches can be fudged, but it is

a fudge
I docstrings are signi�cant (but at least that means docstrings

are there)
I BNF syntax
I Seperate lexer and parser

